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Experimental measurements of the specific heat in glass-forming systems are obtained from the linear
response to either slow cooling (or heating) or to oscillatory perturbations with a given frequency about a
constant temperature. The latter method gives rise to a complex specific heat with the constraint that the zero
frequency limit of the real part should be identified with thermodynamic measurements. Such measurements
reveal anomalies in the temperature dependence of the specific heat, including the so called “specific heat
peak” in the vicinity of the glass transition. The aim of this paper is to provide theoretical explanations of these
anomalies in general and a quantitative theory in the case of a simple model of glass formation. We first present
interesting simulation results for the specific heat in a classical model of a binary mixture glass former. We
show that in addition to the formerly observed specific heat peak there is a second peak at lower temperatures
which was not observable in earlier simulations. Second, we present a general relation between the specific
heat, a caloric quantity, and the bulk modulus of the material, a mechanical quantity, and thus offer a smooth
connection between the liquid and amorphous solid states. The central result of this paper is a connection
between the micromelting of clusters in the system and the appearance of specific heat peaks; we explain the
appearance of two peaks by the micromelting of two types of clusters. We relate the two peaks to changes in
the bulk and shear moduli. We propose that the phenomenon of glass formation is accompanied by a fast
change in the bulk and the shear moduli, but these fast changes occur in different ranges of the temperature.
Last, we demonstrate how to construct a theory of the frequency dependent complex specific heat, expected
from heterogeneous clustering in the liquid state of glass formers. A specific example is provided in the context
of our model for the dynamics of glycerol. We show that the frequency dependence is determined by the same
a-relaxation mechanism that operates when measuring the viscosity or the dielectric relaxation spectrum. The
theoretical frequency dependent specific heat agrees well with experimental measurements on glycerol. We
conclude the paper by stating that there is nothing universal about the temperature dependence of the specific

heat in glass formers—unfortunately, one needs to understand each case by itself.
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I. INTRODUCTION

The traditional measurements of the specific heat Cy at
constant volume or Cp at constant pressure involve cooling
(or heating) the sample at a constant rate [1,2]. When applied
to glass-forming systems, this approach has an inherent dif-
ficulty. Since glass-forming systems tend to relax to equilib-
rium slower and slower as the temperature is lowered, at
some point the “constant rate” of cooling becomes too high
for the system to respond to, and then the system does not
reach equilibrium. Typically the specific heat then drops
abruptly, giving rise to the “specific heat peak” at some tem-
perature which is sometimes identified as the glass transition
temperature 7,. Needless to say, such a definition of transi-
tion temperature is less than compelling, since it clearly de-
pends on the rate of cooling and is not inherent to the system
properties.

In an attempt to overcome this difficulty Birge and Nagel
[3] introduced “specific heat spectroscopy.” In this technique
one keeps the sample close to a temperature 7 at all times,
but perturbs it periodically with a small-amplitude oscillation
of frequency w. Linear response theory then relates the
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amount of heat exchanged at that frequency 6Q(w) to the
oscillatory temperature perturbation 5T(w) via the relation

80(w) = C(w) 6T (w), (1)

where C(w) is the frequency dependent specific heat that can
be measured at either constant volume or constant pressure.
In order to find the thermodynamic specific heat one needs to
extrapolate data to the w— 0 limit. Whether or not this ex-
trapolation overcomes the above-mentioned worry of suffi-
cient relaxation time is an issue that has not been fully clari-
fied in the literature.

In this paper we concern ourselves with the theoretical
calculation of the specific heat in glass-forming systems and
in the relation of the specific heat to other material proper-
ties. To this aim we focus on one simulational example (a
binary mixture of point particles interacting via an r~'? re-
pulsive potential) and one experimental example (glycerol).
In the context of the first example we present results of simu-
lations that exhibit two distinct peaks in the curve of the
specific heat vs the temperature. We present for this example
various theoretical results, culminating with a different sce-
nario to explain the specific heat peaks, i.e., the micromelting
of clusters. We believe that this is the central point of the
present paper. To understand the nature of the specific heat
anomalies one must understand the physics that lies behind
the glassy behavior of this model in general and the exis-
tence of the two specific heat peaks in particular. When the
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FIG. 1. (Color online) A snapshot of the system at 7=0.44. In
colors we highlight the clusters of large particles in local hexagonal
order. The colors have no meaning.

temperature is lowered at a fixed pressure this system [4] (as
well as many other glass formers [5-10]) tends to form mi-
croclusters of local order. In the present case large particles
form long-lived patches of hexagonal ordering first (starting
at about 7=0.5), and at lower temperatures (around 7=0.1)
also the small particles form long-lived hexagonal clusters.
The clusters are not that large, with at most O(100) particles
(cf. Fig. 1), depending on the temperature and the aging
time. But we have shown that the long time properties of
correlation functions are entirely carried by the microclusters
[4]. Below we will refer to the microclusters as curds and the
liquid phase as whey. We will argue that the specific heat
responds to the micromelting of these clusters—those of
small particles at the lowest temperatures and those of the
larger particles at higher temperatures. The large increase in
the number of degrees of freedom when a particle leaves a
crystalline cluster and joins the liquid background is the ba-
sic reason for the increase in entropy that is seen as a specific
heat peak.

In the context of the second example we show that the
calculation of the frequency dependent specific heat is easy
when we have a reasonable model of the glassy relaxation.
Having such a model for glycerol [11], we demonstrate in
Sec. IV that the information gained from the frequency de-
pendent specific heat is very similar to that learned from
other linear response functions like broad-band dielectric
spectroscopy. We will be able therefore to present spectra of
the frequency dependent specific heat in close correspon-
dence with experiments.

The specific heat has interesting relations with the me-
chanical moduli of the material, and we present relations
(which pertain to any system with an r~" potential) to the
bulk and shear moduli. As a result of our thinking we con-
clude that the bulk and shear moduli change rapidly in the
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temperature range of the two distinct specific heat peaks
mentioned above. The relation to the bulk modulus is ex-
plicit, and is shown rigorously in Sec. II C. The relation to
the shear modulus is less explicit, simply because one does
not have an equation of state with strain (a quantity that is ill
defined in the context of glasses). Nevertheless we present a
conjecture that the bulk and shear moduli in generic glasses
may change rapidly at two different temperature ranges.

The structure of the paper is as follows: In Sec. II we
present the model glass consisting of a binary mixture of
point particles interacting via soft potentials, and discuss its
thermodynamic properties. We derive exact equations for its
specific heat at constant volume, which are correct at all
temperatures through the glass transition. We compare these
results to molecular dynamics simulations in which special
care has been taken to equilibrate the system, summarizing a
computational effort of about two years. The main conclu-
sion of this section is that the details of the interaction po-
tential are crucial in determining what the specific heat does
in the vicinity of the glass transition, and there is nothing
universal about it. For a simple enough potential we can
derive a theory that is in excellent agreement with simula-
tions up to the first specific heat peak. To explain both peaks
we must present a theory that takes into account explicitly
the tendency of the system to form microclusters [4]. The
state of the system then becomes like curds of local crystal-
line order embedded in a whey of disordered fluid. It is the
freezing or melting of these curds that account quantitatively
for the specific heat peaks, as is shown in Sec. III. Below we
use interchangeably the words “clusters” and “curds.” In Sec.
IV we turn to discussing the frequency-dependent complex
specific heat. To construct a theory of this object one needs a
model of the dynamics of the system under study, be it glyc-
erol or any other material. We demonstrate, using our dy-
namical model of glycerol [11], how this measurement is
equivalent in terms of its dynamical contents to any other
linear response to an oscillatory perturbation. We present the-
oretical spectra and show satisfactory agreement with the
experiments. The paper ends in Sec. V where we draw con-
clusions and summarize the results and the implications of
our calculations.

II. THE BINARY MODEL AND ITS SPECIFIC HEAT

The model discussed here is the classical example [12,14]
of a glass-forming binary mixture of N particles in a two-
dimensional domain of area V, interacting via a soft 1/r'?
repulsion with a “diameter” ratio of 1.4. We refer the reader
to the extensive work done on this system [12,14-17]. The
summary of this work is that the model is a bona fide glass-
forming liquid meeting all the criteria of a glass transition.

In short, the system consists of an equimolar mixture of
two types of particles, “large” with “diameter” o,=1.4 and
“small” with “diameter” o;=1, respectively, but with the
same mass m. In general, the three pairwise additive interac-
tions are given by the purely repulsive soft-core potentials

Oab

d’ab(r) = E(
r

) 9 a7b:192’ (2)

where o,,=0, and o,,=(0,+0,)/2. The cutoff radii of the
interaction are set at 4.50,,. The units of mass, length, time,
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and temperature are m, oy, T=0, \s"m—/e, and e€/kg, respec-
tively, with kg being Boltzmann’s constant. In numerical cal-
culations the stiffness parameter of the potential (2) was cho-
sen to be n=12.

We turn now to the analysis of the specific heat of this
model as a function of the temperature.

A. Specific heat (simulations)

The specific heat capacity (specific heat) at constant vol-
ume is defined by
Cy d 9 (U
N 2 dJI N |y

where d is the space dimension and the potential energy of
the binary mixture is given by

1
U= EE ¢ab("ij)~ 4)

i#j
Here r;; is the distance between particles i and j. The average
value of the potential energy is defined by averaging over
configurational space I':
JU exp(- U/T)dI’
[exp(-=U/Tdl
Substitution of Eq. (5) into Eq. (3) yields the following ex-
pression for the specific heat:
Cy_d (U*)-(Uy
e -
N 2 NT?

(U) = (5)

(6)

The specific heat of our binary mixture model was mea-
sured at constant volume in [13,14,20] and by us. In simula-
tions one can measure the specific heat directly from its defi-
nition (3) or (6). We have used the last equation which
allows one to estimate the specific heat in a single run of the
canonical ensemble Monte Carlo simulations. At each tem-
perature the density was chosen in accordance with the simu-
lation results in an N-P-T ensemble as described in [14] with
the pressure value fixed at P=13.5. As the initial configura-
tion in the Monte Carlo process the last configuration of the
molecular dynamics run for this model at given temperature
after 1.3 X 108 time steps was used. After short equilibration
the potential energy distribution functions were measured
during 2 X 10° Monte Carlo sweeps. The acceptance rate was
chosen to be 30%. Simulations were performed with N
=1024 particles in a square cell with periodic boundary con-
ditions.

Examples of the spline interpolation of the potential en-
ergy distribution for a few temperatures are shown in Fig. 2.
The first and second moments of these distributions define
the average value of the potential energy (Fig. 3) and the
specific heat (Fig. 4). We stress that these results were com-
puted at constant volume, such that the volume corresponds
to simulations in N-P-T ensemble with the pressure P
=13.5 [14] at each temperature.

One can see from these figures that the behavior of both
quantities, the first and second moments of the distribution,
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FIG. 2. (Color online) The energy distribution functions for the
binary mixture model, computed at constant volume, such that the
volume agrees with the pressure P=13.5 [14] at each temperature.

change abruptly in the vicinity of T~0.5. The specific heat
displays a maximum in the temperature dependence. Our
simulations appear to provide trustable values of Cy down to
lowest temperatures where the value of the specific heat co-
incides with that of a two-dimensional solid, i.e., Cy=2.
What could not be seen in earlier simulations is that there is
a much smaller second peak of the specific heat at lower
temperatures. To resolve it to the naked eye we present in
Fig. 4 a blowup of the region of lowest temperatures where
the second peak is more obvious. To understand the nature of
the specific heat anomalies we turn now to a theoretical
analysis of the caloric equation of state in order to study the
specific heat using the definition (3). The physical origin of
the two peaks will be explained in Sec. III. The reader who is
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FIG. 3. (Color online) Dots: the temperature dependence of the
average potential energy per in the binary mixture model, computed
at constant volume, such that the volume agrees with the pressure
P=13.5 [14] at each temperature. The continuous line represents
the approximation furnished by the virial expansion, which obvi-
ously fails for 7<<0.5.
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FIG. 4. (Color online) Dots: the temperature dependence of the
specific heat in the binary mixture model, computed at constant
volume, such that the volume agrees with the pressure P=13.5 [14]
at each temperature. The data indicate the existence of two specific
heat peaks, one prominent at about 7=0.5 and a smaller one at
about 7=0.1; see the inset for finer detail. The continuous line
represents the approximation furnished by the virial expansion,
which obviously fails for 7<<0.5.

mostly interested in the physical insight is invited to jump to
that subsection.

B. Specific heat (series expansions)

The general expression for the pressure (thermal equation
of state) obtained from the virial theorem is given by

1 0 rii
P=pT- £ E ”ijm > (7)
2d N i#] (?rij

where p is the particle number density. The potential is a
homogeneous function of degree —n [Eq. (2)], therefore

AP ) ®)
:

Due to this property of the interaction potential we find a
connection between the pressure and the temperature and
mean energy:

_ oo U
P—pT+d N 9)

This equation is exact for one component and multicompo-
nent systems and is valid at all temperatures, from liquid to
solid.

The next simplification for systems with an inverse power
interparticle interaction consists in the dependence of all ex-
cess thermodynamic properties relative to the ideal gas on a
single density-temperature variable [21,22]. To see why, re-
call that for a one component system the canonical partition
function Zy is defined by

PHYSICAL REVIEW E 78, 061504 (2008)

1 € 1
In=—— —o'—— 2 — |arV. 10
N N!Ade exp( kBTE VZ) ( )

Here A=h/(2mmkgT)"? is the thermal de Broglie wave-
length. The typical distance between particles is given by

z:(}%)ud. (11)

Thus one can use new variables in the integral (10), =7/,
and the canonical partition function can be rewritten as

A € 1
- _ nid _ N
Zy= N!AdNNNf exp( Y kBTE | )ds , (12)

ij

where the dimensionless particle number density is defined
by p:%o‘l. This way of writing the partition function under-
lines the existence of the ideal gas contribution before the
configurational integral, and the dependence of the configu-
rational integral, in the case of one component, on a natural
parameter, I'= p(ka)d’”.

In the case of a multicomponent system the properties of
the mixture can be approximated by those of a one compo-
nent reference fluid [23] with an effective diameter defined
by

(rf=2xaxba'gb, (13)
a,b

where x,=N,/N is the particle number concentration. There-
fore the properties of a mixture are defined by the effective
parameter:

d
Fe=1“<2> . (14)

g1
Nevertheless, in [14] it was shown that for soft potential a
more suitable definition of the effective diameter is given by

07 =X,0% + X,03. (15)

e

Such a definition leads to a more accurate virial expansion,
as obtained for the present model by [14] using molecular
dynamics simulations in the temperature range 0.5<7<35

P
=1+ 1773 06T, +2.362 41T% +2.107 98T
p

+7.694 8714 — 16.238 9T"> + 27.990 871°°
—16.864 317 + 5.469 98I'%. (16)

Substitution of Egs. (16)—(9) yields the caloric equation of
state; the specific heat is calculated after that by Eq. (3). The
density corresponding to a given temperature is defined as
the solution of Eq. (16) at P=13.5.

Results of the calculations in the frame of the virial ap-
proach are compared with the simulation results in Figs. 3
and 4. Clearly, the virial expansion (16) cannot be trusted for
temperatures lower than 7=0.5 since it was computed from
simulations that did not go below that temperature. This tem-
perature is precisely the point at which small microclusters
become significant, and a pure liquid homogeneous state de-
scription of the glassy phase breaks down. Indeed, down to
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that temperature the prediction of Eq. (3) together with the
virial expansion fits the data excellently well. To understand
what happens at lower temperatures we must await Sec. III
where the existence of microclusters is taken explicitly into
account. In addition, some comments about the limit of tem-
perature going to zero and the relation to the Madelung con-
stant can be found in Appendix A.

C. Specific heat (mechanical approach)

In this subsection we connect the specific heat to the bulk
modulus of the system. To this aim we begin with the micro-
scopic definition of the stress-tensor in an N-V-T ensemble

(see, e.g., [24]):
1 (?¢ b(r
oaﬂ=—(2 2 Dl ity (17)
\% i j#:l (97'” r”
where p{* is the component of the dimensionless momen-
tum of particle i and r,j is the @ component of the vector
joining particles i and j. The first invariant of the stress ten-
sor is its trace:

V(G +0y) = (2 PP+ (p«;‘)z) +nU. (18)

In order to average Eq. (18) one has to take into account that

<2 W> — M) = NT. (19)
Thus the average of the first invariant (18) is
(0 + (0, = 20T+ mp . (20)

The pressure is defined as P=((o,,)+(0,))/2 and Eq. (20)
yields Eq. (9).
The square of Eq. (18) is

Voutct oy + 2000 =( 2 )+ 2 02
+2n( 2 0P+ 2 01U
(1)

To compute the average of this equation we need to use the
fact that ((p})?)=T and {(p})*)=3T>. After averaging Eq. (21)
is written as

V(0000 +<

+n2U2.

0y,0,,) + 2(0,,0,,)) = 4NT* + 4AN*T*

XYY
+4NTn(U) + n*(U?). (22)
The square of Eq. (20) is given by
V(0 + (0,0 + 20, ){(ay,)) = AN’T? + 4NTn(U)
+nXU). (23)

After subtraction of Eq. (23) from Eq. (22) we have
V(00w — (007 + (0y,0,,) = (0,,)°) + 2((0,0,,)
— (. X0, )] =4NT? + n*((U?) - (U)?). (24)

This equation has a well defined thermodynamic limit since
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the quantity in square brackets scales like V-!. This is seen
explicitly in Eq. (25).

These results allow us now to find exact relationships be-
tween the specific heat, a caloric quantity, and the elastic
constants which are mechanical quantities. To do so we re-
call the definitions of the elastic constants through the stress

fluctuations (see, e.g., [25]):

14
;,«O-aﬁo-y&) - <0-a6><0-y5>) = ZPT(50(75,B§+ 5a§5ﬁy) + (Cgﬁyﬁ
Caﬁ‘y&)» (25)
where C,z,5 are the elastic constants and C'f;,,}y(S are the so

called Born terms which determine the instantaneous elastic
constants for any given configuration.
Substitution of Eq. (25) to Eq. (24) yields

n*((U* - (U)») =4NT* + V[(C%,
+C

yyyy

)Lxu + Cf} )yy + ZCfxv») (Cxxxx
(26)

+2C) ]

The compression (bulk) modulus in two-dimensional sys-
tems is

1
= _(Cxxxx +C
4

yyyy + ZCXX)’})

(27)
Recalling Eq. (6) and substituting it and Eq. (27) into Eq.
(26) yields

cy K*-K

—=1+4 28
N (28)

n*pT ’
where the bulk modulus in the infinite frequency limit K*
=pT+K® and the Born term is defined by the interparticle
interactions [26]:

p_ L < F Pap(ry) B 3%1;(’@‘))
K= 4V§j T\ " (9rl-2j arij ' (29)

For the present model the “infinite frequency” term (cf. [26])
is given by

n(n+2) (U)
4 N

K*=pT+ (30)

This is as much as one can do using exact identities. We
reiterate that Eq. (28) is very interesting, allowing us to con-
nect the bulk modulus to the specific heat. In fact, this con-
nection implies that the specific heat measures the difference
between the bulk modulus and its infinite frequency limit. At
low temperatures this difference in the harmonic approxima-
tion is given by

2

n
K*-K=—pT,

4 31)

independent of the solid structure in contrast to the shear
modulus (cf. [17]).

The bulk modulus K cannot be computed exactly using
identities, and we need further information to evaluate it.
Fortunately we can estimate the bulk modulus from the virial
expansion (7) at 7>0.5, since
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TABLE I. Parameters used in the calculation of the specific heat. The parameters for the clusters are
obtained from explicit calculations of the ground states at 7=0 and P=13.5 (see [18] for details) and then for
the whey the parameters were fitted to the observations in the simulations.

« e € e v 0! v, o,
3.69 2.07 3.76 2.16 1.43 0.92 1.58 0.94
IP and the number of clusters are all explicit functions of tem-
K= P&_p~ (32) perature and pressure.

Having done so we can compare the measurements to what
we expect theoretically. The specific heat as predicted from
the virial expansion is shown in Fig. 4 as the blue (continu-
ous) line. We should stress that computing Cy from either
Eq. (3) or Eq. (28) [using the virial expansion (16)] yields
essentially identical results that cannot be distinguished in
the blue line in Fig. 4 for 7>0.5.

II1. SPECIFIC HEAT—THE PHYSICAL EXPLANATION

In this section we propose the physical picture behind the
existence of the specific heat peaks. We argue that the spe-
cific heat responds to the micromelting of the clusters—those
of small particles at the lowest temperatures and those of the
larger particles at higher temperatures. The large increase in
the number of degrees of freedom when a particle leaves a
crystalline cluster and joins the liquid background is the ba-
sic reason for the increase in entropy that is seen as a specific
heat peak. We can specialize these observations for the
model at hand (with inverse power potential) or present the
discussion in greater generality for any model. These two
approaches are presented in the two following subsections.

A. Mechanical equation of state

In this subsection we employ the mechanical equation of
state derived above from which the spec1ﬁc heat will be
computed. To start we define vﬁ, vl v , and v?, respectively,
as the volume of large particle in the whey, small particle in
the whey, large particle in the solid and small particle in the
solid. Similarly we denote by e , €, e and €, the energy of
a large and small particle in the whey and in the crystalline
phase, respectively. Needless to say, all these quantities are
temperature and pressure dependent; we use the methods in-
troduced in [18] in Appendix A, where we consider the prop-
erties of this system at zero temperature and at P=13.5. This
prov1des us with our low temperature knowledge concerning
v and v} in the crystalhne phase. Then we treat the differ-
ences v, — vf, and v;,—v} as constants that we best fit to our
simulation results. Similarly we estimate ef and € from our
knowledge of the hexagonal lattices at 7=0. We assume that
6& =~ ef and similarly € = € since our simulations indicate a
very small change in these parameters; see Table I. It should
be stressed that the enthalpy change at these pressures are
almost all due to the PV term. This will result in a semiquan-
titative theory ascribing the important changes in specific
heat to the changes in the fraction of particles in curds and
whey. In other words, the number of particles in the whey

As the condensed phase consists of clusters of large and
small particles, we use the notation Ng for the number of
clusters of n large particles and N;, for the clusters of m
small particles. In the next subsection we write the energy of
our system explicitly in terms of these cluster numbers. Here
however, we only need the intensive variables p
=23 M/N pi=2%,N' /N, pt=2N'/N, and p:=2N‘/N
which stand for the fractlon of large partlcles and small par-
ticles in the curds, and large particles and small particles in
the whey, such that pc+p =1 and pl+p;,=1. Using these
variables we can write an expression for the volume per par-
ticle v=V/N:

€ s s

C W 33
L (33)

2 2

At this point we need to derive expressions for pf and p..
To do so we need to remember that in the relevant range of
temperatures the large particles in the whey can occupy ei-
ther hexagonal or heptagonal Voronoi cells, whereas small
particles can occupy only pentagonal or hexagonal cells
[4,15,16]. Accordingly there are g' ~(26-1)/6+27/7 ways
to organize the neighbors of a large particle in the whey
(neglecting the rare large particle in heptagonal neighbor-
hood), but only one way in the cluster. Similarly, there are
g8 ~(26-1)/6+25/5 ways to organize a small particle in the
whey. We note that this estimate assumes that the relative
occurrence of the different Voronoi cells is temperature inde-
pendent. While reasonable at higher temperatures [4], at
lower temperature one should use the full statistical mechan—
ics as presented in [16] to get more accurate estimates of g o
and g}, This is not our aim here; we aim at a physical un-
derstanding of the specific heat peaks rather than an accurate
theory. We thus end up with the simple estimates

1

¢
pc(P,T) 1 +g( [(E _€ )+P(v -v, )]/T (34)
S(P.T) ~ ! (35)
PAL, l+gie (e~ )+Pi~v!) VT

Since these estimates are crucial for the theory below we
test them directly against the simulation data. In the simula-
tion we measure the probability sp, to find (say) a large
particle in a cluster of size s. Here a “cluster” is defined as at
least seven large particles in hexagonal packing (i.e., s=7).
The algorithm used for finding the clusters and counting
them is described in detail in [19]. The quantity expressed by
Eq. (34) in the present language is n.=ZXsp, in the language
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FIG. 5. (Color online) A test of Eq. (34). In points we present
simulation results whereas the continuous line is given by Eq. (34).

of Ref. [19]. We thus measure n, numerically as a function of
the temperature and compare the result with the theoretical
prediction (34); see Fig. 5. The numerical measurements are
represented as open points; the line is the theoretical predic-
tion, exhibiting an excellent agreement. A similar compari-
son of a similar quality pertains to the clusters of small par-
ticles as well.

It is important to note that the combination of Eq. (33)
together with Egs. (34) and (35) provides a mechanical equa-
tion of state that is alternative to the virial expansion pre-
sented above. Whereas the latter is best at temperature higher
than 7=0.5 we expect the present one to be best at low
temperatures because only the present approach takes into
account the formation of clusters explicitly. The virial expan-
sion by construction is a liquid theory. We will now compute
Cy directly from Eq. (28). The peaks in the specrﬁc heat are
determined by the temperature dependence of pC(P T) and
pi(P,T) each of which has a temperature and pressure de-
rivatives that peaks at a different temperature, denoted as
T(P) and T°(P), and see below for details. As said above we
take Avezvﬁ,—vf and Av*=v] -v} as approximately con-
stants (as a function of temperature and pressure). The con-
stants are estimated from the condition that the second tem-
perature derivative of pf(P,T) and p3(P,T) should vanish.
Explicitly

Av’ = T{P"Ing'/P*,  Av® = T5(P*)In g’ /P*, (36)

where P* is the pressure for which the peaks in the deriva-
tives are observed (13.5 in our simulations). This is equiva-
lent to a linear dependence of the specific heat peaks as a
function of pressure, T¢(P)/T(P*)=P/P* and similarly for

the small particles.
In terms of these objects we can rewrite

v=0,(P,T) + Av(1 - p’) + Av*(1 - p?), (37)
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FIG. 6. (Color online) Specific heat at constant volume as pre-
dicted by the simple theory which is based on the mechanical equa-
tion of state supplied by Egs. (55) and (33)—(35). Note that the
theory predicts the two peaks which are associated with the mi-
cromelting or microfreezing of the clusters of large and small par-
ticles, respectively. The magnitude of the peaks is too high, reflect-
ing terms missing in the simple approach, like the effect of
anharmonicity at the lowest temperatures which are negative, tend-
ing to decrease the height of the low-temperature peak.

€ 4
0, d,
(—&”> =<—’?UC) —Au‘(—pC> —Av5<—pc) . (398)

To compute the temperature dependence of (;ﬂp)r we need
first to determine its 7— 0 limit, which is determined by the
first term on the right-hand side of Eq. (37) as the other terms
on the right-hand side decay exponentially fast when 7— 0.
Since we have already exact results for the bulk modulus for
the present model, we return to Egs. (28) and (30). We know
on the one hand that lim;_,, Cy=2 and that (U)/N=2.94
over the whole interesting temperature range, cf. Fig. 3.
The compressibility k is related to the bulk modulus via
k=—( aP)T/ v=1/K and therefore easily estimated as 7—0

since there (aP) ~-1/(123.5-35T). We use this approxima-
tion up to 7=0.5.

Having all the ingredients we can compute Cy/N. The
parameters used were estimated from the numerical simula-
tion and are summarized in Table I. Since the aim of this
subsection is only semiquantitative, we do not make any at-
tempt of parameter fitting, and show the result of the calcu-
lation in Fig. 6.

Indeed, the theoretical calculation exhibits the existence
of two, rather than one, specific heat peaks. We can now
explain the origin of the peaks as resulting from the deriva-

tives ( (7P)T and ( )T These derivatives change most
abruptly when the microclusters form (or dissolve) each at a
specrﬁc temperature determined by (4,—h%)/In g} and (h
-h )/ In gv Note that there can be pressures (both upper and
lower boundaries) where the sign of (k) —h}) or (h h)
change sign and the peak can be lost.

B. Caloric equation of state

In this subsection we present a more general approach
which does not take direct input from results derived for the
inverse power potential. Thus although we use below some
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parameters read from the simulation, the derivation is very
general and pertains to any distribution of clusters. To this
aim we derive a second equation of state, a caloric one. It is
quite standard to have two equations of state, only for ideal
gas and inverse potentials the two equations of state degen-
erate into one.

Denote the total energy of the system as a sum of E,, the
energy of the clusters (or curds), and E,,, the energy of the
liquid background (or whey), i.e.,

E=E,+E,. (39)

These energies are sums over the degrees of freedom—
translational, rotational, vibrational, and configurational:

E.=E, +E. +Eypc+Econpes (40)

tr.c rot,c vib,c

E,=E,,+Ey i+ Econfo (41)

m,w vib,w

To estimate E,, . we consider the number Nf; of clusters of n
large particles and N;, of clusters of m small particles and
write

Ey.= T[E N+S an] . (42)

On the other hand in the whey we follow Eyring [27] and
Granato [28] and write

Ey=TIN, + N, If, (43)

where f=1- Vf‘j)/ V,, is defined as the fraction of free volume
in the liquid phase compared to the equivalent solid crystal-
line phase. In other words,

V,=Nvl + NS, (44)
s € S .8
VO =Nl N (45)

Similarly, we write

Eppo= [2Af€+szn], (46)

Eyipe= 2T[2 N+ S anm] , (47)
Eyipy = 2TIN, + N, J(1 = /), (48)
wnfc =€ 2N€n+62 m (49)

confw Ne + GSVNW (50)

In terms of these variables we can rewrite

N | p. D
E,= T{H o >+(pw+pw)f} (51)
_NT| p.  pb
Erove= [<n> *om) } ’ 52
E,ip=NT[2(1 =) + (p! + pD)f], (53)
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E [:sw+e‘y +(e —€ )p( +(€-€)pl]l. (54)

conf = 2
Summing up all the contributions we need to pay attention to
the order of magnitude of the various terms. Since we expect
the average size of clusters, at the temperatures of interest, to
be of the order of 30 or so, we can neglect safely all the
terms that have average size clusters in the denominator.
With this in mind the expression for the energy of the system
takes the form

E 2-pt
i 2_ Pe
N 2

A}

-pl | €+e e-e , e-€ |
+ ..

f 5 5 P 5 P
(55)

This is the caloric equation of state that we were after.
Using it, we can compute Cy directly from the thermody-
namic identity

cy C ?
—‘/z—P—Tﬂ, (56)
N N K

where the thermal expansion coefficient is
\var/p, v 2 ar ) p 2 ar )|’
(57)

and the compressibility is

7
vIP/p

¢ ¢ ¢ s s s
=_l[_(vc‘vw_)<%> +—(”f‘vw)(%> } (58)
v 2 oP )¢ 2 oP ) 1

The last object that we need to obtain for evaluating Cy is

CP:
071 ﬁ] P.

K

Using our expressions (55) and (33) we find

- 5
N 2 ar),l2 " 2T

s K K €
+T<%) |:\£+ (hc_hw):| _ (2_pc_pc) <(9f>
ar)l2"  2r 2 T

(60)
Having all the ingredients we can sum up the terms in Eq.
(56). The parameters used were estimated from the numeri-
cal simulation and are summarized in Table I. As before, we
did not make any attempt for parameter fitting, and show the
result of the calculation in Fig. 7.

C. Discussion

The bottom line of the simple theory described in the
previous subsection is that there are two important ranges of
temperature, first around 7= 0.5 where clusters of large par-
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FIG. 7. (Color online) Specific heat at constant volume and at
constant pressure as predicted by the simple theory which is based
on the caloric equation of state supplied by Egs. (56)—(59). In
agreeement with the simulations and the theory based on the me-
chanical equation of state (cf. Fig. 6) the theory predicts the two
peaks to both Cy and Cp which are associated with the micromelt-
ing or microfreezing of the clusters of large and small particles,
respectively. Note that Cp=C, as 1is expected from
thermodynamics.

ticles begin to form, and a second around 7= 0.1 where clus-
ters of small particles begin to appear. The first important
change is also seen in the bulk modulus; this is not surpris-
ing, since the crystalline clusters have a bulk modulus very
different from the fluid. Nevertheless, between the clusters
we still have appreciable fluid regions which act as lubricants
for the response to shear. We thus expect the shear modulus
to change appreciably only when the small particles begin to
cluster, in the vicinity of the smaller specific heat peak. We
therefore conjecture that the two specific heat peaks are also
associated with changes in the bulk and shear modulus, re-
spectively. We expect that any measurements of the glass
properties connected with bulk and shear moduli will show
different transition temperatures if these quantities do not
reach simultaneously their K* counterparts.

We cannot at this point assess how general is this split
between bulk and shear moduli, and whether it will be seen
in generic glasses. We thus leave this point for further re-
search, stressing that we expect this phenomenon to appear
whenever there exist microclusters of preferred ordering in
the scenario of glass forming.

Having an effective equation of state, albeit approximate,
we can easily compute any thermodynamic derivative of in-
terest. We wrote above explicit expressions for the compress-
ibility and the thermal expansion coefficient. Others are as
easily calculated. The point to stress, however, is how non-
universal the thermodynamics is. In this model we have two
specific heat peaks, in others we might have one or several.
We would also expect a strong pressure dependence for these
peaks.

IV. FREQUENCY-DEPENDENT SPECIFIC HEAT

By applying time dependent heat fluxes 5Q(r) to the lig-
uid and measuring the resulting temperature fluctuations
OT (1), the specific heat can be measured, 8Q(¢)=C8T(z). As
mentioned in the Introduction, measurements of the specific
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heat of glassy fluids at low temperatures can in principle be
made under conditions of either constant volume (isochoric
conditions) or constant pressure (isobaric conditions), but ex-
perimentally isobaric conditions are the norm.

The first and best known measurement of the frequency
dependent complex specific heat was performed in glycerol,
and we take these experimental results as our motivation for
this section. We stress from the beginning that our approach
is not particular for glycerol, and it can be applied to any
other material where, as we assume for glycerol, there exist
clusters of various sizes that determine the dynamical re-
sponse. In order to develop a model of the frequency depen-
dent specific heat in glycerol we will employ our own model
of the glassy phase of glycerol. This model assumes that
glassy glycerol is a heterogeneous fluid on macroscopic time
scales. That is, that while on very long time scales the liquid
phase is homogeneous, there exist localized mesoscale do-
mains in the fluid that have macroscopic lifetimes. Indeed,
inhomogeneities that appear to survive for 10* s contribute to
the dielectric response in the Fourier domain at frequencies
as low as 10™* Hz in some cases. Clearly such inhomogene-
ities will also contribute to anomalies in the frequency de-
pendent specific heat C,(T,w). We develop the theory by
deriving expressions for the time-dependent enthalpy fluc-
tuations (AH(r)AH(0)) that are related to the frequency de-
pendent specific heat at constant pressure in terms of the
distribution of these heterogeneities. The reader is referred to
[11] for an introduction to the dynamical model of glassy
glycerol in which the dielectric spectra are computed in great
detail.

A. Frequency dependent specific heat

By considering a temperature field T(z)=T+ 8T(¢), t<O0;
T(r)=T, >0 and using linear response theory on an isobaric
ensemble where the appropriate Boltzmann distribution is
exp(—BH)/Z, with the enthalpy given by H=E+ PV, Nielsen
and Dyre [29] find that the frequency dependent specific heat
is given by the form

(AH?) .\ iw
kgT?>  kpT?

C,(T,w) = J *(AHWAHO)e s
0

(61)

In Eq. (61) AH(r)=H(t)-(H) is an enthalpy fluctuation away
from equilibrium. Therefore we write

H(t) = 2 Ns*(t)Hs + Ml(t)hl’ (62)

where N,(7) is the number of clusters consisting of s mol-
ecules in the glassy phase and M,(r) are the remaining mol-
ecules in the mobile liquid phase. H, is the enthalpy of a
cluster of s molecules at a pressure P and temperature 7,

H/(P,T)=E/(P,T) + PV(P,T) = (€. + pv,)s + os*>.
(63)

In Eq. (63) €.(P,T) is the energy per molecule in the con-
densed phase; v.(P,T) is the volume per molecule in the
condensed phase; and o(P,T) is the surface energy per mol-
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ecule. Finally h,(P,T)= ¢+ Pv,(P,T) is the enthalpy per mol-
ecule in the mobile phase.
Now in equilibrium we can write

(Hy= 2 (NJH, +(M)h, (64)

and we also have the sum rule

D SN0 + M(1) =M, (65)

s

where M is the total number of molecule in the system. We
can write the enthalpy fluctuations away from equilibrium at
time ¢ as

AH(1) = H(1) = (H) = 2 (N,(1) = (N)hy = 25 AN,

(66)
where

hy=H,—sh;=(€,— €)s+P(v.—v)s+os’>. (67)

Let us first calculate the equilibrium fluctuations ((AH)?).
To this end we assume that there are no correlations between
the dynamics of clusters of different sizes, implying
(AN,AN!)=0. Then, using the expression Eq. (66) for the
enthalpy fluctuations, we can immediately write that

(AH)?) = 2 (ANHR?. (68)

Similarly for the time dependent enthalpy fluctuations

(AH()AH(0)) = 2, (AN() AN,(0))1. (69)

We have thus reduced the correlation functions for the en-
thalpy fluctuations into expressions involving the fluctua-
tions in cluster number for clusters of different sizes s.

To estimate these correlation functions we proceed as fol-
lows. First we note that the number of molecules N,(¢) in the
clusters can be written as a sum over the clusters as N.(¢)
=X N,(1)s, and consequently the fluctuations in the total
number of particles away from equilibrium are AN,(7)
=X AN,(t)s. Then, assuming Gaussian fluctuations we esti-
mate the mean square fluctuations of the number of particles
within some small volume

((AN)?) = (N.) (70)

or rewriting
2 ((AN)?)s* = 2 (Nys. (71)

From this equation we therefore see that

((AN)?) = (N)/s. (72)

For the time dependent fluctuations therefore, assuming
an independent Debye relaxation for each cluster,
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(AN,(DAN(0))y = (Ny)e™" /s, (73)

where 7, is the lifetime of a cluster of size s. Thus we get our
final expression for the enthalpy fluctuations in equilibrium
in terms of the cluster size distribution as

(AH)%) = 2 (N (h2s) (74)

and for their time dependent correlations
(AH()AH(0)) = 2 (N e (hs). (75)
We now substitute these expressions into Eq. (61) with
the result

1
kpT?

(N (h2ls)

l-iwT,

>

s

C,(T,w) = (76)

or splitting the specific heat into its real and imaginary parts,

1« (N)(hY/s)
Re CP(T’ ©) = kBT22 1+ (w‘T;2 ’
1 N (h/s)(wr,
Im C,(T, ) = kBTzE < f: (;)Ti)z ) (77)

We can now use our previous results for the cluster dis-
tributions in the case of glycerol to find the real and imagi-
nary specific heat anomalies in the case of glycerol. We do
not re-fit any of the parameters used in the calculation of the
broad dielectric spectroscopy (BDS) spectra [11], we simply
use the previous knowledge at the temperatures indicated,
and plot the results, fitting only the heat conductivity of glyc-
erol. We approximate hf/s~ (h.—hy)%s, such that Eq. (76) is
rewritten as

(he=h)* < (Nys
kpT? 2 '

C\(T,w) = (78)

L 1 —iwTg

Splitting the specific heat into its real and imaginary parts,

h.—hy)?
Re C,(T,0) = ( k Tf) > LEIZ’QS 7 (79)
B K WT;
2
Im CP(T,O)) ~ (hc_hf) 2 <Ns>s(w7's) (80)

kgT? T 1+ (07)?
The resulting curves multiplied by the thermal conductivity
are shown in Figs. 8 and 9. These should be compared to Fig.
2 of [3]. The reader can convince himself that the theory
captures the experimental results quantitatively.

We would like to stress at this point that the results ob-
tained here are equivalent in dynamical contents to the com-
putation of the dielectric spectra in [11]. In that calculation
one focused on the dielectric response €(w) and as here de-
composed it into its real and imaginary parts €(w)
=Re e(w)+ Im e(w). It was found in [11] that without the dc
contribution (which is absent in the case of specific heat) we
could write
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FIG. 8. (Color online) The theoretical real part of the specific
heat Re C,,(») multiplied by the thermal conductivity for glycerol.

S(NYs/[1 + (07,)%]
S(Ns

Re €(w) — €.,

(60 - EOC)

>

Im (w) _ S(N)s(o7)/[1+(0)*]
(60 - EOO) - ES<NS>S

(81)

Once normalized, the specific heat spectra are identical to
these spectra. The reason for the identity is in the assump-
tions that {m-m)~ s and (h%) ~s2, cf. Eq. (67). On the other
hand, the role of the relaxation times 7, and the distribution
of cluster sizes are exactly the same in the two expressions.

V. SUMMARY AND DISCUSSION

Probably the most glaring consequence of the calculations
presented in this paper is that the specific heat is a valuable
indicator of the interesting physics that occurs during the
glass transition, but this transition is in no way universal. The
temperature dependence of the specific heat is determined by
details like interparticle potentials and micromelting or mi-
croformation of clusters. In this sense any hope for univer-

2 X 1(_)’3 Imaginary part of the specific heat times thermal conductivity
—T=210K
1.8F T=205K
—— T=200K
1.6 —T=195K
1.4F
1.2F
§<E}.
o 1r
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0.81
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0.4r
0.2r
0 I I I )
-4 -3 -2 -1 0 1 2 3 4
log,(®)

FIG. 9. (Color online) The theoretical imaginary part of the
specific heat Im C,,(w) multiplied by the thermal conductivity for
glycerol.
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sality is untenable. Nevertheless, we have shown that the
specific heat peaks herald interesting new physics, leading to
fast changes in the mechanical moduli which are also asso-
ciated with fast changes in the inhomogeneities that are cru-
cial for the glassy behavior, i.e., the formation of microclus-
ters. We propose that the appearance of two specific heat
peaks in the case of the binary mixture indicates two differ-
ent ranges for the increase in moduli, the bulk modulus at
higher temperatures when the first type of clusters form, and
the shear modulus when the other type of clusters form, and
the “lubricating” effect that allows the system to shear dis-
appears. All this interesting physics is indicated by the be-
havior of the thermodynamics specific heat. As for the com-
plex specific heat we have shown, in the context of the
example of glycerol, that the physics revealed by the com-
plex specific heat compared to other methods of linear re-
sponse like broad dielectric spectroscopy are identical. In
fact, a straightforward consequence of our model for glycerol
is the prediction that the spectra measured from specific heat
can be divided by the spectra computed, say, from BDS, and
the result should be a constant number. We do not have data
for exactly the same temperature, but such an experiment
would be very useful for the near future.

It will be interesting to see in future research whether the
two specific heat peaks discussed above may be seen in other
systems, or maybe an even richer scenario can appear, with
more peaks, when more types of clusters intervene in the
process of glass formation.
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APPENDIX A: THE ZERO TEMPERATURE LIMIT

It follows from the simulation results that at lower tem-
peratures the specific heat is at least close to the value of the
solid. Therefore we can write the energy of the system in the
harmonic approximation:

dN

U=Uy+ E a;i4q;,
ij

(A1)

where U, is the potential energy of the system in the refer-
ence state, a;; are expansion coefficients, and g; is a Cartesian
coordinate of the deviation of the current position of a par-
ticle from equilibrium. There are dN degrees of freedom (ne-
glecting translations and rotations of the system) in Eq. (A1),
therefore it follows from the equipartition theorem that the
average potential energy of the system in the solid state is
[30]

u) U, d
O _U, dp (A2)
N N 2
Substituting Eq. (A2) in Eq. (A3) immediately yields Cy=2
for two dimensional solids. At the equilibrium configuration
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the potential energy (4) of the binary mixture model (2) is
given by

(A3)

Due to the scaling properties of the inverse power potential it

is possible to normalize the interparticle distances by the

typical distance (11) r;;—s;;=r;/1 [31]:
Uo

~0 _ n/d
=Cyup >

N (A4)

where the constant ¢y, =(1/2N)Z;;1/s]; is independent of the
density. Note that this constant is known as the Madelung
constant in solid-state physics. Taking into account Eq. (A4),
the average potential energy of a harmonic solid (A2) can be
rewritten as

U
<—> =cyp"l+ —T.

N 5 (AS5)

The value of the constant c;, can be calculated simulationally
using Eq. (A5); the results are shown in Fig. 10. One can see
that below 7=0.5 the change of this constant is small. Nev-
ertheless, this change reflects the fact that our calculations at
the smallest values of the temperature are not fully relaxed to
equilibrium even though we took extreme care. Typically at
the lowest temperatures the system can be trapped for incred-
ibly long times in a local minimum of the energy surface,
where each local minimum has slightly different equations of
state [16]. While we expect the Madelung constant to be
unique for a given crystal, our system here contains clusters
of preferred structures with random orientations [18], and
therefore the analog of the Madelung constant is not strictly
defined. It may very well depend on the protocol of cooling.
The present best estimate of the value of this parameter at the
lowest temperatures is c;,=14.649.

The caloric equation of state (A5) substituted to the virial
equation (7) gives the following thermal equation:
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FIG. 10. (Color online) Evaluated values of the constant ¢,
from the simulation results.

P (1 + 9) + 2o . (A6)
2) d

The value of the renormalized constant ¢,/ o,=1.394 can be

compared with the result for the two dimensional one-

component system with hexagonal crystal, which is 1.268

[32]. The fact that this constant is expected to increase in an

amorphous solid was anticipated in [31].

Finally, we note from Eq. (A6) that in contrast to a crys-
talline solid the thermal (caloric) equation of state here re-
mains ambiguous because the value of ¢, depends on the
preparation protocol. With this in mind it becomes fruitless
to seek the anharmonic corrections to Eq. (A6) as in the case
of a one component system with a well-defined reference
state at low temperatures. Nevertheless, we stress that the
specific heat at constant volume does not suffer from any
ambiguity and therefore can be taken as a good indicator of
the solidification.
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